Welcome to the GSFC Exoplanet Modeling and Analysis Center (EMAC)

EMAC serves as a catalog, repository and integration platform for modeling and analysis resources focused on the study of exoplanet characteristics and environments. EMAC is a key project of the GSFC Sellers Exoplanet Environments Collaboration (SEEC).

If you've used EMAC in any part of your research, please cite our RNAAS paper either in your methods section or in the "Software used" portion of any manuscripts; see the FAQ for more information.

More Information on EMAC for first-time visitors...

If you make use of tools linked or hosted on EMAC: please use the following statement in your publication acknowledgements: “This research made use of the NASA Exoplanet Modeling and Analysis Center (EMAC), which is funded by the NASA Planetary Science Division’s Internal Scientist Funding Model.”

Stay up to date with EMAC!
  • Subscribe to our monthly RSS messages on new updates and tools
  • Check out the Twitter account @ExoplanetModels (not an official NASA account), where new tools and features are highlighted
Help us improve EMAC!
  • Email us with general feedback at and tell us what you’d change or improve.
  • Click the icon in a resource box to provide suggestions for an individual tool or tools.
Other EMAC info!
  • EMAC is intended as a clearinghouse for the whole research community interested in exoplanets, where any software or model developer can submit their tool/model or their model output as a contribution for others to use.
  • EMAC provides a searchable and sortable database for available source code and data output files - both resources hosted locally by EMAC as well as existing external tools and repositories hosted elsewhere.
  • The EMAC team also helps develop new web interfaces for tools that can be run “on-demand” or model grids that can be interpolated for more individualized results.
  • If you would like to submit a new tool/model to EMAC, please visit our Submit a Resource page.
  • For help with tutorials for select resources/tools use the “Demo” buttons below and subscribe to our YouTube channel.
  • Watch this video for a walk-through of the whole EMAC site, including how to submit a new tool and how to access information for each resource.

The P.I. is Avi Mandell, and the Deputy P.I. is Eric Lopez; more information on EMAC staffing and organization can be found on Our Team page.

MCMCI: MCMC-based analysis of light curves or RV time series with interpolation within stellar isochrones

Bonfanti A., Gillon M.

EMAC: 2207-081 EMAC 2207-081
copy_img
https://emac.gsfc.nasa.gov?cid=2207-081

The MCMCI tool offers the opportunity to perform an integrated analysis of an exoplanetary system without splitting it into the preliminary stellar characterisation through theoretical models.The MCMCI combines the Markov chain Monte Carlo approach of analysing photometric or radial velocity time series with a proper interpolation within stellar evolutionary isochrones and tracks, to be performed at each chain step, to retrieve stellar theoretical parameters such as age, mass, and radius. This approach favours a close interaction between lightcurve analysis and isochrones, so that the parameters recovered at each step of the MCMC enter as inputs for purposes of the isochrone placement.

Last updated: Mar. 31, 2021

Code Language(s): Fortran

MCMCI: MCMC-based analysis of light curves or RV time series with interpolation within stellar isochrones

Bonfanti A., Gillon M.

copy_img
https://emac.gsfc.nasa.gov?cid=2207-081
2207-081

The MCMCI tool offers the opportunity to perform an integrated analysis of an exoplanetary system without splitting it into the preliminary stellar characterisation through theoretical models.The MCMCI combines the Markov chain Monte Carlo approach of analysing photometric or radial velocity time series with a proper interpolation within stellar evolutionary isochrones and tracks, to be performed at each chain step, to retrieve stellar theoretical parameters such as age, mass, and radius. This approach favours a close interaction between lightcurve analysis and isochrones, so that the parameters recovered at each step of the MCMC enter as inputs for purposes of the isochrone placement.

About