Welcome to the GSFC Exoplanet Modeling and Analysis Center (EMAC)

EMAC serves as a catalog, repository and integration platform for modeling and analysis resources focused on the study of exoplanet characteristics and environments. EMAC is a key project of the GSFC Sellers Exoplanet Environments Collaboration (SEEC).

If you make use of tools linked or hosted on EMAC, please use the following statement in your publication acknowledgements: “This research made use of the NASA Exoplanet Modeling and Analysis Center (EMAC), which is funded by the NASA Planetary Science Division’s Internal Scientist Funding Model.”

More Information on EMAC...       >
  • EMAC is intended as a clearinghouse for the whole research community interested in exoplanets, where any software or model developer can submit their tool/model or their model output as a contribution for others to use.
  • EMAC provides a searchable and sortable database for available source code and data output files - both resources hosted locally by EMAC as well as existing external tools and repositories hosted elsewhere.
  • The EMAC team also helps develop new web interfaces for tools that can be run “on-demand” or model grids that can be interpolated for more individualized results.
  • If you would like to submit a new tool/model to EMAC, please visit Submit a Resource page.
  • If you have suggestions for tools we should recruit or improvements to the site, please visit Feedback page or email us at
  • Please help us determine the best tools for new web interfaces by voting on our Vote page.

The P.I. is Avi Mandell, and the Deputy P.I. is Eric Lopez; more information on EMAC staffing and organization will be posted shortly.

PyATMOS

William Fawcett et al.

PyATMOS is a software package able to configure and run the Virtual Planetary Laboratories' ATMOS software, which is an exoplanetary atmosphere simulator. PyATMOS is written in Python, allowing easy user configuration and running, and is optionally configurable with Docker and therefore can be used on any machine with Docker and Python installed, regardless of the operating system. PyATMOS can be used in "single-use" mode, simulating a single exoplanet atmosphere with a given set of atmospheric parameters, but also in a parallel mode, whereby a grid of possible parameters for many atmospheres is supplied. PyATMOS will explore this parameter space and produce a database of the results.

Atmos

Claire et al.

IN PROGRESS — Atmos is a packaged photochemical model and climate model used to understand the vertical structure of various terrestrial atmospheres. Its photochemical model calculates the profiles of various chemicals in the atmosphere, including both gaseous and aerosol phases. Its climate model calculates the temperature profile of the atmosphere. While individually these models may be run for useful information, when coupled they offer a detailed analysis of atmospheric steady-state structures.